2012 IUFRO CONFERENCE	
DIVISION 5 - FOREST PRODUCT	1
8:13 JULY'12 ESTORIL CONGRESS CENTRE LISBON-PORTUGAL	

Influence of containers on root development after transplantation on different

provenances of Pinus pinaster Aiton using rhizotrons. Fermín Garrido¹, Roberto San Martín¹, Felicidad López¹, Francisco Lario², R. Sierra (1)Universidad de Valladolid E.T.S.II.AA (Palencia-Spain) (2)TRAGSA(Ourense-Spain) (2)

Introduction:

Although most of the planting carried out worldwide continues to be done by direct seeding, for economic reasons reforestation with container plants is particularly interesting in the Mediterranean region and is most often used in some countries like Spain. The container used in the nursery has a grea influence on the morphology and subsequent root development, affecting both the development and survival of plants and its stability (Sundstrom & Keane 1999; WATSON & Tombleson 2002). Rooting depth as well as structure and distribution of roots have been shown to be closely related to adaptive strategies in different biomes globally (GUERRERO-CAMPO & FITTER 2001). The differences in radical formation, the highest root density and the presence of twisty roots in the containers with respect to natural regeneration has been associated with a reduced capacity of root production in field soil especially the lateral ones and with a plant architecture which is highly different from those regenerated by direct seeding (Grene, 1978; HALTER and CHANWAY, 1993). Once transplanted, the less developed root system of container-grown plant in the field may reduce the structural stability (Lindstrom and Rune, 2000) and growth of trees.

IUFRO)

0

Given the great variability that Pinus pinaster provides in virtually all morphological and adaptive characters, it also seems safe to assume that there is natural variability in the capacity to generate roots with different effectiveness for anchorage.

The objective of this experiment is to study the rate of root growth and its spatial distribution during the first year of life over two provenances of Pinus pinaster, comparing plants grown in containers and then transplanted with plants grown from seeds (natural regeneration). Monitoring was carried out periodically through rhizotrons as a method of non destructive continuous observation.

Methodology:

We used a total of 36 rhizotrons with plants of provenances of Gredos and Oña. For each provenance, half the plants were obtained through direct seeding and the other half through containers. The experimental design was randomized blocking

Seeding was carried out for both treatments on September 19, 2010 in Maceda (Ourense), Autonomous region of Galicia (Spain). Container crop treatment and later transplantation was performed by attaching containers longitudinally open, filled with substrate to the rhizotrons forespot 150 cc so that the Rhizotron glass limited half of the container. At the end of the first growing season in March 2011, half container was taken out and the rest of the Rhizotron was filled with substrate, thus simulating a transplantation to the ground. The direct seeding treatment was performed on the Rhizotron placed in the same position. The trial for the two treatments was conducted entirely outdoors with a duration of one year. The rhizotrons were made of white painted sheet metal to avoid overheating, dimensions were 100x30x10 cm (Riedacker

1974), reaching a volume of 30 litres with a movable side to observe the roots. They were tilted 30 degrees from the vertical to ensure the growth of the root attached to that face due to geotropism

The sampling frequency was set at 40 days according to (Joslin and Wolfe, 1998). To study the growth of the roots, these were copied on acetates using permanent markers in different colours depending on dates of control, so that it was possible to collect all the information for later processing into cabinet. This technique has been the same as that used by (Grieu et Aussenac 1988) to follow the growth and development in seedlings of three conifer species

The root length was measured with a curvimeter and the angle of insertion of secondary roots with respect to the tap root with a conveyor. Similarly, height and diameter on the aerial part were measured using tape and a caliper respectively.

The parameters analyzed were :

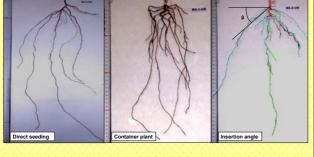
Aerial parts

Height of plant

Diameter at neck insertion

Presence/ absence of terminal buds Number of needles per plant

Underground part


Length of tap root

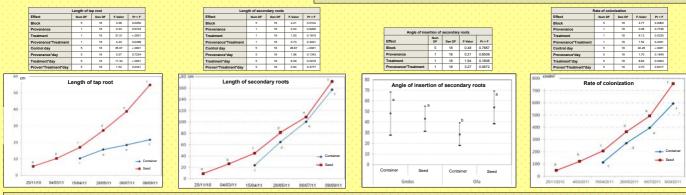
Length of secondary roots

- Taproot atrophy
- 1st and 2nd secondary root angle
- Total root length according to seeding and provenances
- Rate of colonization according to seeding and provenances

Results and discussion:

A repeated measures ANOVA was performed for the analysis of variance.

On the aerial part, no significant differences between treatments in any of the parameters studied were noticed, probably because of the short period of time for analysis which was of one year


Significant differences in the atrophy of the tap root were found in the root system, being greater in container plants, probably due to planting out. No differences were found among provenances

The tap root growth in seed plants is significantly higher pv <0.0038 compared to plants from container during the entire sampling period.

However, there are not significant differences in growth at any stage of the experiment regarding secondary roots length

Provenance has not been a significant factor in any of the variables studied, nevertheless, a significant effect on the angle of insertion of secondary roots is seen, having the Oña provenance in container a smaller angle than the same one through direct seeding. In Gredos plants, this effect does not appear.

Finally, the rate of root colonization until the July control has been significantly lower in container plants than in direct seeding . From this time on, the two treatments are equal in terms of the root surface that the Rhizotron occupies

Conclusions:

It is obvious that the container causes a root system morphology that is completely different from which is produced naturally. See pictures

Normally, container grown plants produce root systems that are less symmetrical than the naturally seeded. This is especially important in young plantations but tend to disappear in adult plantations (LINDSTRÖM and RUNE, 2000).

In general, the root system in both treatments is developed densely and with a homogeneous spatial distribution within the Rhizotron, which allows them to adapt perfectly to the environmental conditions of post transplanting. This may lead to a better morphological balance to increase survival and stability of the plantations.

References

Guerrero-Campo, Jj. & A.H. Fitter; 2001. Relationships between root characteristics and seed size in two contrasting floras. Acta Oecologica-International Journal of Ecology 22(2): 77-85

Joslin J, Wolfe M, 1999 : Disturbances during minirhizotron installation can affect root observation data. Soil Sci Soc Am J 63, 218-221

Lindstrom, A. & Hakansson, L. 1995. Going to the root of the evil. Canadian Silviculture Magazine3(2): 15–17. Riedacker A. 1974. Un nouvel outil pour l'étude des racines et de la rhizosphère : le minirhizotron. Annales de les des Sciences Forestières, 31(2), 129-134.

Sundstrom, E. & M. Keane; 1999. Root architecture, early development and basal sweep incontainerized and bare-rooted Douglas fir (Pseudotsuga menziesii). Plant and Soil 217(1-2): 65-78

University of Valladolid-INIA

SUTAINABLE FOREST MANAGEMENT Acknowledgements

We thanks Evelio Alonso, Lourdes Asensio and Arancha Otaño for technical help. This work was supported by the Spanish MICINN and FEDER, project AGF 97-0809. "and PSS-310000-2010-004"