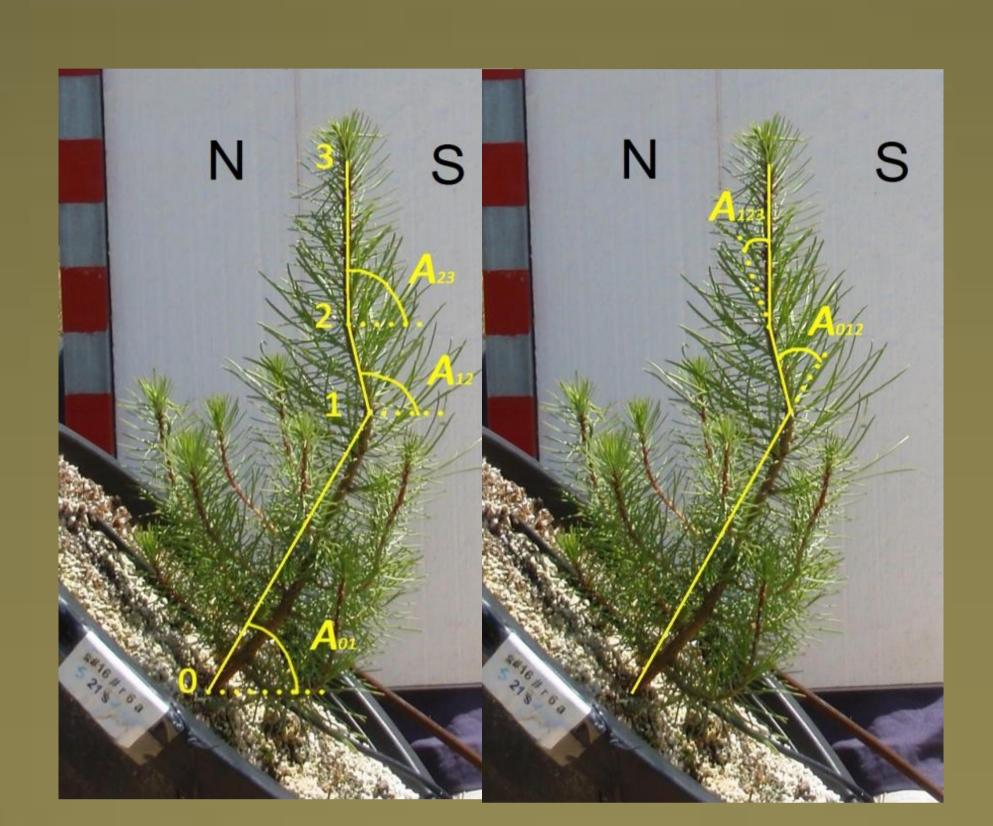


¹ETS Ingenierías Agrarias, Universidad de Valladolid, Palencia, Spain. ²Tragsa. Vivero de Maceda. Maceda, Ourense, Spain.

INTRODUCTION:

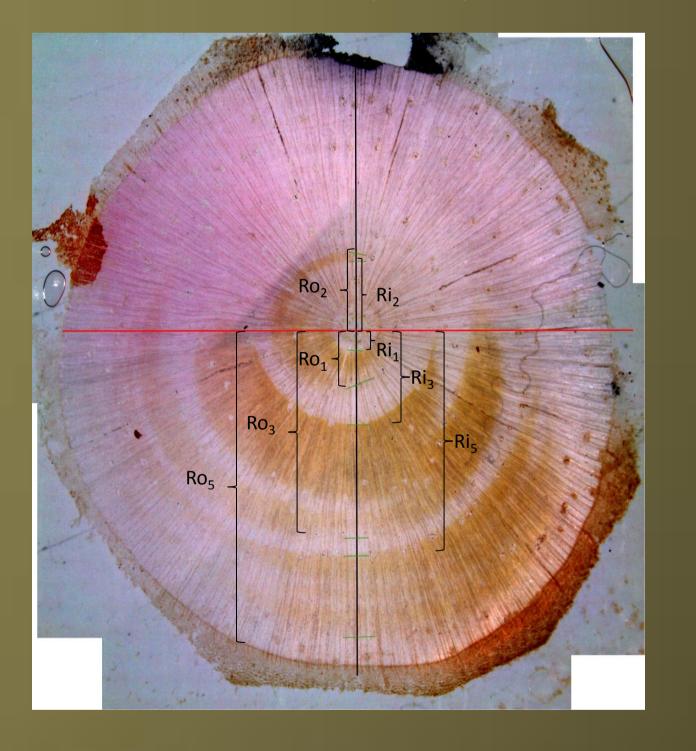
Maritime pine *(Pinus pinaster*) Ait.) is the conifer which major volume of wood is obtained in Spain. In this species the wood quality is usually low due to the lack of stem straightness. In addition, stem flexuosity produces an increase in the costs of transport and manufacturing of the row material. Recently, an alternative method for early selection of the stem straightness has been proposed, based on the biomechanical processes underlying the stem straightening reactions instead of the evaluation of stem form.


OBJECTIVES:

We studied the variability among progenies in the gravitropic and autotropic reactions, and the efficiency of compression wood in the stem straightening process, following the same method.

Tragsa

MATERIAL AND METHODS: Plants from 38 *Pinus pinaster* half-


$$\partial C = -4 \cdot \alpha_j \cdot \frac{dR}{R^2}$$

$$\Delta A_{01}(t) = \beta * \varphi_{01}(t) + \varepsilon$$

sib families from the Norwest Interior provenance and 6 different provenance commercial seeds controls were used. When the plants were one year old, they were artificially tilted at 45°.

VARIABLES ANALYZED:

The kinetic study of the stem form changes (angles of deviation from the horizontal) were measured based on photographs taken during a 4 month period after tilting. Subsequently, compression wood (CW) was analyzed in four stem cross sections per plant. We estimate heritabilities and genetic correlations among variables related with stem straightening process. The CW efficiency in the straightening process (estimated by maturation strains) was calculated with Fournier's biomechanical model (1994).

The changes in local curvature was integrated along the stem to estimate the final angle of A_{01} predicted by the model (Φ). α is half the difference in maturation strain between the upper and lower sides of the stem and β is the estimator of α .

_				
β	A ₀₁	A ₀₁₂ 30	Φ	
19	36	30	38	
22	14	2	13	
5	8	TIET	15	
1	GRE	11	29	
21	20	7	35	
6	5	14	TIET	
GRE	21	15	37	
3	10	35	27	
36	18	4	OÑA	
NOL	1	25	26	
11	26	13	24	
23	9	NO L	TEL	
16	6	33	20	
8	27	5	21	
14	3	16	2	
4	17	TEL	17	
33	19	21	GRE	
18	38	MC	30	
9	37	8	12	
17	24	9	31	
25	4	32	18	
12	31	GRE	32	
28	34	38	9	
26	NO L	OÑA	5	
20	11	28	28	
34	12	12	1	
27	13	6	10	
37	15	20	34	
10	22 7	10	44 - MC	
31		23	4	
35	33	27	3	
7	29	37	23	
29	28	31	8	
38	35	18	6	
15	16	22	16	
13	23	29	NOL	
24	25	34	25	
TIET	32	1	7	
2	TEL	36	14	
	TIET	19	33	
32	2	24	11	
MC	OÑA	26	19	
30	MC	17	22	
OÑA	30	3	36	

RESULTS:

We found high significant correlations among gravitropic movements driven by secondary growth and maturation strains, and high heritabilities of these movements. It suggests that a high genetic control of gravitropic movements driven by secondary growth exists, so these parameters might be interesting for early selection in breeding programs.

We expected that the most straight families are those which values of β , ΔA_{o1} and A_{o1} parameters are the highest. This together with the good heritability values of these variables and the high correlation between ΔA_{o1} and A_{o1} with β , indicate them as the most interesting variables for the early selection in a breeding program of *Pinus pinaster* Ait. the Northwest Interior provenance

	r_A ₀₁	r_A ₁₂	r_A ₂₃	r_ΔA ₀₁	r_A ₀₁₂	r_A ₁₂₃	r_ΔA ₀₁₂	r_Φ
r_β	0.5961	0.3445	0.3899	0.7216	-0.2678	0.1143	0.5285	-0.6173
	<.0001	0.022	0.0089	<.0001	0.0788	0.46	0.0002	<.0001

Heritabilities (h²)

	ΔΑ ₀₁	β	A ₀₁	A _{12fin}	A ₂₃	A ₀₁₂	A ₁₂₃	ΔΑ ₀₁₂	Φ
h ²	0.5483	0.5210	0.4916	0.4222	0.4780	0.4121	0.2895	0.6205	0.2500

REFERENCES:

Fournier, M., H. Bailleres and B. Chanson (1994). Tree Biomechanics: Growth, cumulative prestresses and reorientations. Biomimetics. 2 (3): 229-252. Sierra-de-Grado, R., Pando, V., Martínez-Zurimendi, P., Báscones, E., Peñalvo, A. and Moulia, B. (2008). Biomechanical differences in the stem straightening process among Pinus pinaster provenances. A new approach for early selection of stem straightness. Tree physiol. 28,835-846.

Acknowledgements: We thanks Felicidad López, Evelio Alonso, Ana Olivera, Pablo Martínez-Zurimendi and María Menéndez, for their help in field work. This work was supported by nº PGIDIT07MRU005E de la Xunta de Galicia Project.

