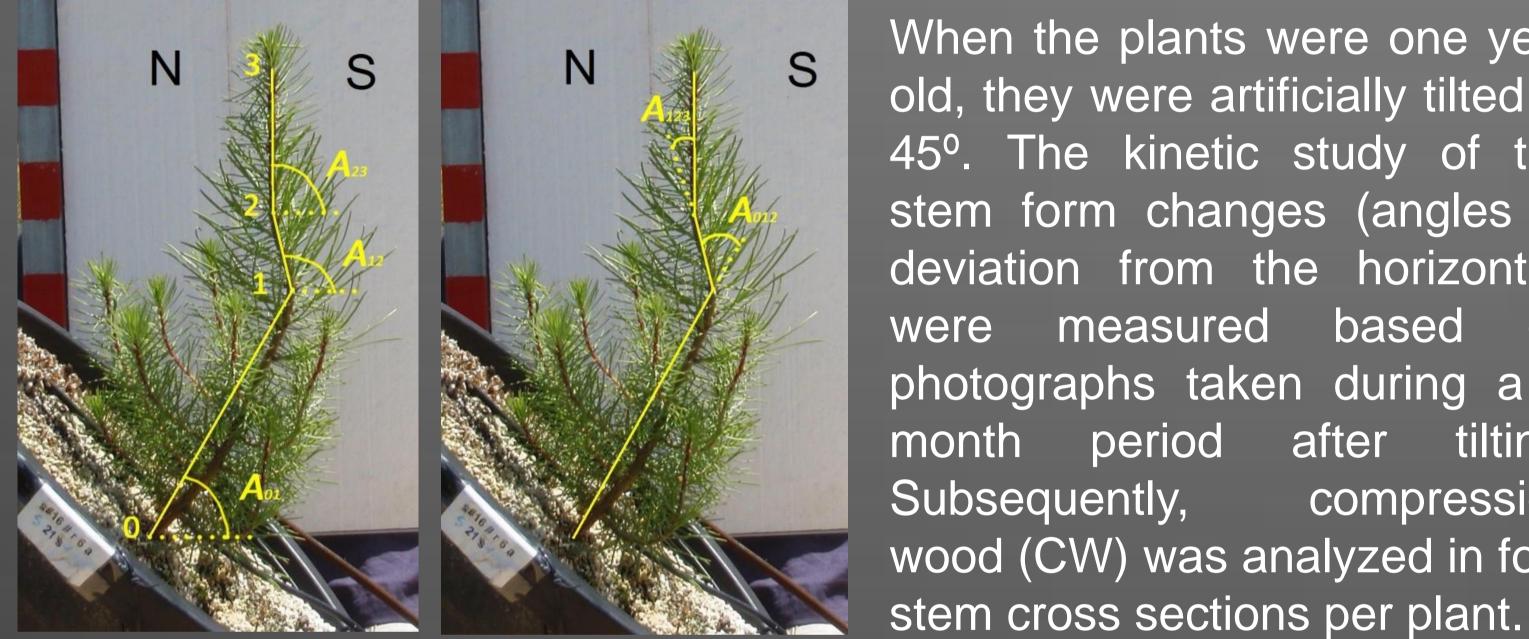


Jniversidad de Valladoli

EVALUATION OF THE STRAIGHTENING ABILITY IN Pinus pinaster Ait. PROGENIES

Ainhoa Calleja-Rodríguez¹, Roberto San Martín¹, Ana Olivera¹, Francisco J. Lario Leza², Pablo Martínez-Zurimendi¹, Fermín Garrido¹ and **Rosario Sierra-de-Grado¹**


¹ETS Ingenierías Agrarias, Universidad de Valladolid, Palencia, Spain. ²Tragsa. Vivero de Maceda. Maceda, Ourense, Spain.

Pinus pinaster Ait. is the conifer which major volume of wood is obtained in Spain. In this pine species the quality of the wood is low due to the lack of stem straightness. In addition, stem flexuosity produces an increase in the costs of transport and manufacturing of the row material.

Recently, an alternative method for early selection of the stem straightness has been proposed, based on the efficiency of reaction wood in the stem straightening process instead of the evaluation of stem form (Sierra de Grado et al., 2008). Biomechanical analysis showed in artificially tilted seedlings that_differences in the secondary gravitropic and autotropic reactions in the stem straightening process are related to differences among provenances characterized by different straightness.

We studied the variability among progenies in the gravitropic and autotropic reactions, and the efficiency of compression wood in the stem straightening process, following the same method. Plants from 38 Pinus pinaster Ait. progenies from the Norwest Interior provenance and 6 different provenance commercial seeds controls were used. The progenies were phenotypically selected by Tragsa company in Galicia (Norwest of Spain).

When the plants were one year old, they were artificially tilted at 45°. The kinetic study of the stem form changes (angles of deviation from the horizontal) were measured based on photographs taken during a 6 month period after tilting. Subsequently, compression wood (CW) was analyzed in four

The CW efficiency in the straightening process (α parameter) was calculated with Fournier's biomechanical model (1994).

$$\partial C = -4 \cdot \alpha_j \cdot \frac{dR}{R^2} \quad \Delta A_{01}(t) \cdot = \beta * \varphi_{01}(t) + \varepsilon$$

The changes in local curvature was integrated along the stem to estimate the final angle of A₀₁ predicted by the model ($\overline{\Phi}$). α is half the difference in maturation strain between the upper and lower sides of the stem and β is the estimator of α .

$\Delta A01$ Fixed effects type 3 test					A01fin Fixed effects type 3 test						All the plants followed the pattern described in previous					
Effect	Num DF	Den DF	F-Valor	• Pr > F	Eff	ect N	um DF	Den D	F F-Va	lor Pr > F		anical analysis. The ANOVA analysi				
Progenie	43	367	3.10	<.0001	Prog	jenie	43	367	2.9	8 <.0001	effect of t	he progenie is significant for ΔA_{01} ,	A _{01fin}	, A ₀₁	2fin.	The
Plot	9	367	1.99	0.0400	PI	ot	9	367	1.7	4 0.0792	heritabiliti	ies were high (> 0.4).	βΔ	01 A01 fi	n PHI A	012fin
A012 Fixed effects type 3 test						Φ	6	β Δ Α01	A012fir	A01fin		39 32 30	39 4 44 3 30 3	44 22 30 19 39 36	30 2 42	
Effect	NumDF [Den DF I	-Valor	Pr > F	h2	0.016						Our results were used to make	44	32	2 14	11
Progenie	43	367	2.11	0.0001	n-	h ² -0,0162		,4001 0,6317		0,4030	0,4215	the ranking of the progenies	24 29	40	40 33	15
Plot	9	367	2.95	0.0022		6 Plots			10 Plots		3	according to the compression	29 37 20	7 3 42 2	32 4 25 40	35
								n n					20	33 2	23 1	25

REFERENCES:

Fournier, M., H. Bailleres and B. Chanson (1994). Tree Biomechanics: Growth, cumulative prestresses and reorientations. Biomimetics. 2 (3): 229-252.

Sierra-de-Grado, R., Pando, V., Martínez-Zurimendi, P., Báscones, E.,

efficiency wood and the gravitropic secondary movements.

 Control from straight

fin, A _{012fin} . The								
A A01	A01 fin	PHI	A012fin					
39	44	22	30					
44	30	19	2					
30	39	36	42					
32	2	- 14	11					
2	42	7	7					
40	40	- 33	15					
7	32	4	35					
42	25	40	4					
33	23	1	25					
24	33	10	13					
10	16	8	41					
34	35	3	5					
31	28	- 16	44					
25	29	12	16					
14	7	- 39	33					
8	22	11	8					
11	15	25	40					
16	13	- 13	21					
13	11	27	9					
29	12	23	32					
28	41	28	43					
36	34	- 34	39					
12	31	- 43	38					

Peñalvo, A. and Moulia, B. (2008). Biomechanical differences in the stem straightening process among Pinus pinaster provenances. A new approach for early selection of stem straightness. Tree physiol. 28,835-846.

(medium-high straightness).

Acknowledgements: We thanks María Menéndez and Nayla Rodríguez for their help in field work. This work was supported by nº PGIDIT07MRU005E de la Xunta de Galicia Project.

